W1.43

Proportioning of Raw Materials

1	Chemical Principles
а	Hydraulic Modulus (H.M.)
	$H.M. = CaO/(SiO_2 + Al_2O_3 + Fe_2O_3)$
	Normal range for $O.P.C 1.7-2.2$
b	Silica Modulus or Silica Ratio (S.M.)
	$S.M. = SiO_2/(Al_2O_3 + Fe_2O_3)$
	Normal range = $1.2 - 4.0$; commonly 2.4-2.7
c	Iron Modulus or Iron Ratio (I.M.)
	$I.M. = Al_2O_3 / Fe_2O_3$
	Normal range = $1-4$; commonly $1.5-2.5$

d Kuhl's Lime Standard (K) $K = 100CaO / (2.8SiO_2 + 1.1Al_2O_3 + 0.7Fe_2O_3)$ For O.P.C., K = 90-95For Rapid Hardening Cement, K = 95-98

2 Types of lime stone and content of Calcium Carbonate (CaCO₃)

Designation of stone	% CaCO ₃		
High grade limestone	98-100		
Marly limestone	90-98		
Lime marl	75-90		
Marl	40-75		
Clayey marl	10-40		
Marly clay	2-10		
Clay	0-2		

3 In calcinations process , CO₂ is released from carbonates and water of hydration is Driven off from clays.

100 parts $CaCO_3 = 56$ parts CaO + 44 parts CO_2

about 7% water is driven off from clay

A raw mix containing 76 parts CaCO₃ and 24 parts clay will lose per kg,

 $0.76*0.44 = 0.3344 \text{ kg CO}_2$

and, 0.24*0.07 = 0.0168 kg water Therefore total loss of ignition = 0.351kgs. In other words, 1 kg of raw mix Containing 76 % CaCO₃ would yield 0.649 kgs of clinker

For different values of CaCO₃ quantities of materials can be calculated as follows : Let, a = kg of clinker / kg raw meal Then $a = 1-(0.44* \% CaCO_3/100 + 0.07*(100- \%CaCO_3/100))$ If b=kg of raw meal / kg clinker, then b= 1/a 4

5

If c=% CaO in clinker, then c=%CaCO₃*56/100*a For preliminary and broad calculations, it is assumed that 1.55-1.6 kgs of raw meal are required to make 1 kg clinker. Loss of water is ignored.

Proportioning of a two component raw mix

let composition of clay and limestone be as follows: ←-----→ CaO CaCO₃ SiO₂ Al₂O₃ Fe₂O₃ MgO L.O.I. S.M. Limestone 52.9 94.5 2.9 1.1 0.8 0.3 42 1.53 7.7 Clay 4.3 50.4 22.2 8.5 2.1 12.5 1.64 Desired raw mix CaO 42.5 and CaCO₃ = 76 % Then. 94.5 **▼** 68.3 (76-7.7) 76 7.7 ▲18.5 (94.5 – 76)

Proportions of limestone to clay = 68.3 / 18.5 = 3.69After obtaining the proportions as above, composition of raw mix can be calculated

calculated	,		0/				``
				, 0			
	CaO	5102	AI_2O_3	ге ₂ О ₃	MgO	L.O.I.	5.IVI.
Limestone 3.69	52.9	2.9	1.1	0.8	0.3	42	1.53
Clay 1	4.3	50.4	22.2	8.5	2.1	12.5	1.64
% in raw mix	42.5	13.02	5.6	2.4	0.7	35.7	1.6
Lime standard	95.97						
Silica modulus	1.62						
Iron modulus	2.3						
Hydraulic modulus	2.02						
Which fall within the respective normal ranges of these modulii							

More accurate proportioning can be worked out by using Michelis formula

Proportioning on basis of CaO content on loss free basis let x parts of clay be mixed with 1 part of lime; then

x = (CaO limestone - CaO raw mix) / (CaO raw mix - CaO clay)substituting above values, we get limestone /clay = 3.65 same as above.

source: Ottolabahn Cement Engineers Handbook